Coefficients for scattering factors
sfcoeffs.Rd
The nine coefficients of the four-gaussians approximation for the scattering factors
Arguments
- atom_name
A character string. The symbol of the atom whose scattering factor's coefficients are needed (see list of available names in details).
Value
A named list whose three components are vectors and scalars containing the coefficients:
- a
Vector of length 4 containing the \(a_j\)
- b
Vector of length 4 containing the \(b_j\)
- c
Single number, the value of \(c\)
Details
A scattering factor is a function of \(\sigma\equiv\sin(\theta)/\lambda\), which is equal to \(s/2\), with \(s=1/d\) and \(d\) the resolution of the given reflection. The scattering form is satisfactorily modelled as sum of four gaussians: $$ a_1\exp(-b_1 \sigma^2) + a_2\exp(-b_2 \sigma^2) + a_3\exp(-b_3 \sigma^2) + a_4\exp(-b_4 \sigma^2) + c $$ This function returns the coefficients as a named list with three components, \(a=(a_1,a_2,a_3,a_4)\), \(b=(b_1,b_2,b_3,b_4)\) and \(c=c\). The possible atom names (also included are some ionic species) are here summarized.
H
H-1
He
Li
Li+1
Be
Be+2
B
C
Cv
N
O
O-1
F
F-1
Ne
Na
Na+1
Mg
Mg+2
Al
Al+3
Si
Siv
Si+4
P
S
Cl
Cl-1
Ar
K
K+1
Ca
Ca+2
Sc
Sc+3
Ti
Ti+2
Ti+3
Ti+4
V
V+2
V+3
V+5
Cr
Cr+2
Cr+3
Mn
Mn+2
Mn+3
Mn+4
Fe
Fe+2
Fe+3
Co
Co+2
Co+3
Ni
Ni+2
Ni+3
Cu
Cu+1
Cu+2
Zn
Zn+2
Ga
Ga+3
Ge
Ge+4
As
Se
Br
Br-1
Kr
Rb
Rb+1
Sr
Sr+2
Y
Y+3
Zr
Zr+4
Nb
Nb+3
Nb+5
Mo
Mo+3
Mo+5
Mo+6
Tc
Ru
Ru+3
Ru+4
Rh
Rh+3
Rh+4
Pd
Pd+2
Pd+4
Ag
Ag+1
Ag+2
Cd
Cd+2
In
In+3
Sn
Sn+2
Sn+4
Sb
Sb+3
Sb+5
Te
I
I-1
Xe
Cs
Cs+1
Ba
Ba+2
La
La+3
Ce
Ce+3
Ce+4
Pr
Pr+3
Pr+4
Nd
Nd+3
Pm
Pm+3
Sm
Sm+3
Eu
Eu+2
Eu+3
Gd
Gd+3
Tb
Tb+3
Dy
Dy+3
Ho
Ho+3
Er
Er+3
Tm
Tm+3
Yb
Yb+2
yb+3
Lu
Lu+3
Hf
Hf+4
Ta
Ta+5
W
W+6
Re
Os
Os+4
Ir
Ir+3
Ir+4
Pt
Pt+2
Pt+4
Au
Au+1
Au+3
Hg
Hg+1
hg+2
Tl
Tl+1
Tl+3
Pb
Pb+2
Pb+4
Bi
Bi+3
Bi+5
Po
At
Rn
Fr
Ra
Ra+2
Ac
Ac+3
Th
Th+4
Pa
U
U+3
U+4
U+6
Np
Np+3
Np+4
Np+6
Pu
Pu+3
Pu+4
Pu+6
Am
Cm
Bk
Cf
Examples
# Coefficients for the carbon atom
aname <- "C"
lcoeffs <- sfcoeffs(aname)
print(lcoeffs)
#> $a
#> [1] 2.3100 1.0200 1.5886 0.8650
#>
#> $b
#> [1] 20.8439 10.2075 0.5687 51.6512
#>
#> $c
#> [1] 0.2156
#>